Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.507
Filtrar
1.
Sci Rep ; 14(1): 8926, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637558

RESUMO

To evaluate immune responses to COVID-19 vaccines in adults aged 50 years and older, spike protein (S)-specific antibody concentration, avidity, and function (via angiotensin-converting enzyme 2 (ACE2) inhibition surrogate neutralization and antibody dependent cellular phagocytosis (ADCP)), as well as S-specific T cells were quantified via activation induced marker (AIM) assay in response to two-dose series. Eighty-four adults were vaccinated with either: mRNA/mRNA (mRNA-1273 and/or BNT162b2); ChAdOx1-S/mRNA; or ChAdOx1-S/ChAdOx1-S. Anti-S IgG concentrations, ADCP scores and ACE2 inhibiting antibody concentrations were highest at one-month post-second dose and declined by four-months post-second dose for all groups. mRNA/mRNA and ChAdOx1-S/mRNA schedules had significantly higher antibody responses than ChAdOx1-S/ChAdOx1-S. CD8+ T-cell responses one-month post-second dose were associated with increased ACE2 surrogate neutralization. Antibody avidity (total relative avidity index) did not change between one-month and four-months post-second dose and did not significantly differ between groups by four-months post-second dose. In determining COVID-19 correlates of protection, a measure that considers both antibody concentration and avidity should be considered.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto , Humanos , Pessoa de Meia-Idade , Idoso , Enzima de Conversão de Angiotensina 2 , Vacina BNT162 , Estudos Prospectivos , COVID-19/prevenção & controle , Canadá/epidemiologia , Anticorpos , ChAdOx1 nCoV-19 , RNA Mensageiro , Anticorpos Antivirais , Vacinação
2.
J Biomed Sci ; 31(1): 39, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637878

RESUMO

BACKGROUND: High levels of neutrophil extracellular trap (NET) formation or NETosis and autoantibodies are related to poor prognosis and disease severity of COVID-19 patients. Human angiotensin-converting enzyme 2 (ACE2) cross-reactive anti-severe acute respiratory syndrome coronavirus 2 spike protein receptor-binding domain (SARS-CoV-2 RBD) antibodies (CR Abs) have been reported as one of the sources of anti-ACE2 autoantibodies. However, the pathological implications of CR Abs in NET formation remain unknown. METHODS: In this study, we first assessed the presence of CR Abs in the sera of COVID-19 patients with different severity by serological analysis. Sera and purified IgG from CR Abs positive COVID-19 patients as well as a mouse monoclonal Ab (mAb 127) that can recognize both ACE2 and the RBD were tested for their influence on NETosis and the possible mechanisms involved were studied. RESULTS: An association between CR Abs levels and the severity of COVID-19 in 120 patients was found. The CR Abs-positive sera and IgG from severe COVID-19 patients and mAb 127 significantly activated human leukocytes and triggered NETosis, in the presence of RBD. This NETosis, triggered by the coexistence of CR Abs and RBD, activated thrombus-related cells but was abolished when the interaction between CR Abs and ACE2 or Fc receptors was disrupted. We also revealed that CR Abs-induced NETosis was suppressed in the presence of recombinant ACE2 or the Src family kinase inhibitor, dasatinib. Furthermore, we found that COVID-19 vaccination not only reduced COVID-19 severity but also prevented the production of CR Abs after SARS-CoV-2 infection. CONCLUSIONS: Our findings provide possible pathogenic effects of CR Abs in exacerbating COVID-19 by enhancing NETosis, highlighting ACE2 and dasatinib as potential treatments, and supporting the benefit of vaccination in reducing disease severity and CR Abs production in COVID-19 patients.


Assuntos
COVID-19 , Humanos , Animais , Camundongos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Vacinas contra COVID-19 , Dasatinibe , Imunoglobulina G/metabolismo , Autoanticorpos/metabolismo , Glicoproteína da Espícula de Coronavírus , Ligação Proteica
3.
Front Immunol ; 15: 1365803, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646520

RESUMO

Introduction: Angiotensin converting-enzyme 2 (ACE2) is an enzyme catalyzing the conversion of angiotensin 2 into angiotensin 1-7. ACE2 also serves as the receptor of several coronaviruses, including SARS-CoV-1 and SARS-CoV-2. Therefore, ACE2 could be utilized as a therapeutic target for treating these coronaviruses, ideally lacking enzymatic function. Methods: Based on structural analysis, specific mutations were introduced to generate mutants of ACE2 and ACE2-Fc (fusion protein of ACE2 and Fc region of IgG1). The enzyme activity, binding affinity, and neutralization abilities were measured. Results and discussion: As predicted, five mutants (AMI081, AMI082, AMI083, AMI084, AMI090) have completely depleted ACE2 enzymatic activities. More importantly, enzyme-linked receptor-ligand assay (ELRLA) and surface plasmon resonance (SPR) results showed that 2 mutants (AMI082, AMI090) maintained binding activity to the viral spike proteins of SARS-CoV-1 and SARS-CoV-2. In An in vitro neutralization experiment using a pseudovirus, SARS-CoV-2 S1 spike protein-packed lentivirus particles, was also performed, showing that AMI082 and AMI090 significantly reduced GFP transgene expression. Further, in vitro virulent neutralization assays using SARS-CoV-2 (strain name: USA-WA1/2020) showed that AMI082 and AMI090 had remarkable inhibitory effects, indicated by comparable IC50 to wildtype ACE2 (5.33 µg/mL). In addition to the direct administration of mutant proteins, an alternative strategy for treating COVID-19 is through AAV delivery to achieve long-lasting effects. Therefore, AAV5 encoding AMI082 and AMI090 were packaged and transgene expression was assessed. In summary, these ACE2 mutants represent a novel approach to prevent or treat COVID-19 and other viruses with the same spike protein.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Mutação , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Humanos , SARS-CoV-2/genética , COVID-19/genética , COVID-19/virologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Tratamento Farmacológico da COVID-19 , Anticorpos Neutralizantes/imunologia , Animais , Células HEK293 , Ligação Proteica
4.
Front Immunol ; 15: 1294020, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646531

RESUMO

Endogenous retroviruses (ERVs) derived from the long terminal repeat (LTR) family of transposons constitute a significant portion of the mammalian genome, with origins tracing back to ancient viral infections. Despite comprising approximately 8% of the human genome, the specific role of ERVs in the pathogenesis of COVID-19 remains unclear. In this study, we conducted a genome-wide identification of ERVs in human peripheral blood mononuclear cells (hPBMCs) and primary lung epithelial cells from monkeys and mice, both infected and uninfected with SARS-CoV-2. We identified 405, 283, and 206 significantly up-regulated transposable elements (TEs) in hPBMCs, monkeys, and mice, respectively. This included 254, 119, 68, and 28 ERVs found in hPBMCs from severe and mild COVID-19 patients, monkeys, and transgenic mice expressing the human ACE2 receptor (hACE2) and infected with SARS-CoV-2. Furthermore, analysis using the Genomic Regions Enrichment of Annotations Tool (GREAT) revealed certain parental genomic sequences of these up-regulated ERVs in COVID-19 patients may be involved in various biological processes, including histone modification and viral replication. Of particular interest, we identified 210 ERVs specifically up-regulated in the severe COVID-19 group. The genes associated with these differentially expressed ERVs were enriched in processes such as immune response activation and histone modification. HERV1_I-int: ERV1:LTR and LTR7Y: ERV1:LTR were highlighted as potential biomarkers for evaluating the severity of COVID-19. Additionally, validation of our findings using RT-qPCR in Bone Marrow-Derived Macrophages (BMDMs) from mice infected by HSV-1 and VSV provided further support to our results. This study offers insights into the expression patterns and potential roles of ERVs following viral infection, providing a valuable resource for future studies on ERVs and their interaction with SARS-CoV-2.


Assuntos
COVID-19 , Retrovirus Endógenos , SARS-CoV-2 , Retrovirus Endógenos/genética , Animais , Humanos , COVID-19/imunologia , COVID-19/virologia , COVID-19/genética , SARS-CoV-2/fisiologia , SARS-CoV-2/imunologia , Camundongos , Leucócitos Mononucleares/virologia , Leucócitos Mononucleares/imunologia , Camundongos Transgênicos , Elementos de DNA Transponíveis/genética , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Pulmão/virologia , Pulmão/imunologia
5.
J Phys Chem B ; 128(14): 3340-3349, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38564480

RESUMO

The emergence of the variant of concern Omicron (B.1.1.529) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exacerbates the COVID-19 pandemic due to its high contagious ability. Studies have shown that the Omicron binds human ACE2 more strongly than the wild type. The prevalence of Omicron in new cases of COVID-19 promotes novel lineages with improved receptor binding affinity and immune evasion. To shed light on this open problem, in this work, we investigated the binding free energy of the receptor binding domain of the Omicron lineages BA.2, BA.2.3.20, BA.3, BA4/BA5, BA.2.75, BA.2.75.2, BA.4.6, XBB.1, XBB.1.5, BJ.1, BN.1, BQ.1.1, and CH.1.1 to human ACE2 using all-atom molecular dynamics simulation and the molecular mechanics Poisson-Boltzmann surface area method. The results show that these lineages have increased binding affinity compared to the BA.1 lineage, and BA.2.75 and BA.2.75.2 subvariants bind ACE2 more strongly than others. However, in general, the binding affinities of the Omicron lineages do not differ significantly from each other. The electrostatic force dominates over the van der Waals force in the interaction between Omicron lineages and human cells. Based on our results, we argue that viral evolution does not further improve the affinity of SARS-CoV-2 for ACE2 but may increase immune evasion.


Assuntos
Enzima de Conversão de Angiotensina 2 , Simulação de Dinâmica Molecular , SARS-CoV-2 , Humanos , COVID-19
6.
Sci Rep ; 14(1): 7822, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570613

RESUMO

SARS CoV-2, the causative agent for the ongoing COVID-19 pandemic, it enters the host cell by activating the ACE2 receptor with the help of two proteasesi.e., Furin and TMPRSS2. Therefore, variations in these genes may account for differential susceptibility and severity between populations. Previous studies have shown that the role of ACE2 and TMPRSS2 gene variants in understanding COVID-19 susceptibility among Indian populations. Nevertheless, a knowledge gap exists concerning the COVID-19 susceptibility of Furin gene variants among diverse South Asian ethnic groups. Investigating the role of Furin gene variants and their global phylogeographic structure is essential to comprehensively understanding COVID-19 susceptibility in these populations. We have used 450 samples from diverse Indian states and performed linear regression to analyse the Furin gene variant's with COVID-19 Case Fatality Rate (CFR) that could be epidemiologically associated with disease severity outcomes. Associated genetic variants were further evaluated for their expression and regulatory potential through various Insilco analyses. Additionally, we examined the Furin gene using next-generation sequencing (NGS) data from 393 diverse global samples, with a particular emphasis on South Asia, to investigate its Phylogeographic structure among diverse world populations. We found a significant positive association for the SNP rs1981458 with COVID-19 CFR (p < 0.05) among diverse Indian populations at different timelines of the first and second waves. Further, QTL and other regulatory analyses showed various significant associations for positive regulatory roles of rs1981458 and Furin gene, mainly in Immune cells and virus infection process, highlighting their role in host immunity and viral assembly and processing. The Furin protein-protein interaction suggested that COVID-19 may contribute to Pulmonary arterial hypertension via a typical inflammation mechanism. The phylogeographic architecture of the Furin gene demonstrated a closer genetic affinity of South Asia with West Eurasian populations. Therefore, it is worth proposing that for the Furin gene, the COVID-19 susceptibility of South Asians will be more similar to the West Eurasian population. Our previous studies on the ACE2 and TMPRSS2 genes showed genetic affinity of South Asian with East Eurasians and West Eurasians, respectively. Therefore, with the collective information from these three important genes (ACE2, TMPRSS2 and Furin) we modelled COVID-19 susceptibilityof South Asia in between these two major ancestries with an inclination towards West Eurasia. In conclusion, this study, for the first time, concluded the role of rs1981458 in COVID-19 severity among the Indian population and outlined its regulatory potential.This study also highlights that the genetic structure for COVID-19 susceptibilityof South Asia is distinct, however, inclined to the West Eurasian population. We believe this insight may be utilised as a genetic biomarker to identify vulnerable populations, which might be directly relevant for developing policies and allocating resources more effectively during an epidemic.


Assuntos
COVID-19 , Humanos , Enzima de Conversão de Angiotensina 2/genética , COVID-19/epidemiologia , COVID-19/genética , Furina/genética , Pandemias , Polimorfismo Genético
7.
Int J Nanomedicine ; 19: 3087-3108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562613

RESUMO

Purpose: The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the lingering threat to public health has fueled the search for effective therapeutics to treat SARS-CoV-2. This study aimed to develop lipid nanoparticle (LNP) inhibitors of SARS-CoV-2 entry to reduce viral infection in the nose and upper airway. Methods: Two types of LNP formulations were prepared following a microfluidic mixing method. The LNP-Trap consisted of DOPC, DSPC, cholesterol, and DSPE-PEG-COOH modified with various spike protein binding ligands, including ACE2 peptide, recombinant human ACE2 (rhACE2) or monoclonal antibody to spike protein (mAb). The LNP-Trim consisted of ionizing cationic DLin-MC3-DMA, DSPC, cholesterol, and DMG-PEG lipids encapsulating siACE2 or siTMPRSS2. Both formulations were assayed for biocompatibility and cell uptake in airway epithelial cells (Calu-3). Functional assessment of activity was performed using SARS-CoV-2 spike protein binding assays (LNP-Trap), host receptor knockdown (LNP-Trim), and SARS-CoV-2 pseudovirus neutralization assay (LNP-Trap and LNP-Trim). Localization and tissue distribution of fluorescently labeled LNP formulations were assessed in mice following intranasal administration. Results: Both LNP formulations were biocompatible based on cell impedance and MTT cytotoxicity studies in Calu-3 cells at concentrations as high as 1 mg/mL. LNP-Trap formulations were able to bind spike protein and inhibit pseudovirus infection by 90% in Calu-3 cells. LNP-Trim formulations reduced ACE2 and TMPRSS2 at the mRNA (70% reduction) and protein level (50% reduction). The suppression of host targets in Calu-3 cells treated with LNP-Trim resulted in over 90% inhibition of pseudovirus infection. In vivo studies demonstrated substantial retention of LNP-Trap and LNP-Trim in the nasal cavity following nasal administration with minimal systemic exposure. Conclusion: Both LNP-Trap and LNP-Trim formulations were able to safely and effectively inhibit SARS-CoV-2 pseudoviral infection in airway epithelial cells. These studies provide proof-of-principle for a localized treatment approach for SARS-CoV-2 in the upper airway.


Assuntos
COVID-19 , Lipossomos , Nanopartículas , Glicoproteína da Espícula de Coronavírus , Animais , Humanos , Camundongos , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/farmacologia , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/farmacologia , Colesterol
8.
J Med Virol ; 96(4): e29579, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572923

RESUMO

Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) primarily targets the respiratory system. Physiologically relevant human lung models are indispensable to investigate virus-induced host response and disease pathogenesis. In this study, we generated human induced pluripotent stem cell (iPSC)-derived alveolar organoids (AOs) using an established protocol that recapitulates the sequential steps of in vivo lung development. AOs express alveolar epithelial type II cell protein markers including pro-surfactant protein C and ATP binding cassette subfamily A member 3. Compared to primary human alveolar type II cells, AOs expressed higher mRNA levels of SARS-CoV-2 entry factors, angiotensin-converting enzyme 2 (ACE2), asialoglycoprotein receptor 1 (ASGR1) and basigin (CD147). Considering the localization of ACE2 on the apical side in AOs, we used three AO models, apical-in, sheared and apical-out for SARS-CoV-2 infection. All three models of AOs were robustly infected with the SARS-CoV-2 irrespective of ACE2 accessibility. Antibody blocking experiment revealed that ASGR1 was the main receptor for SARS-CoV2 entry from the basolateral in apical-in AOs. AOs supported the replication of SARS-CoV-2 variants WA1, Alpha, Beta, Delta, and Zeta and Omicron to a variable degree with WA1 being the highest and Omicron being the least. Transcriptomic profiling of infected AOs revealed the induction of inflammatory and interferon-related pathways with NF-κB signaling being the predominant host response. In summary, iPSC-derived AOs can serve as excellent human lung models to investigate infection of SARS-CoV-2 variants and host responses from both apical and basolateral sides.


Assuntos
COVID-19 , Células-Tronco Pluripotentes Induzidas , Humanos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/metabolismo , RNA Viral , Pulmão , Organoides , Receptor de Asialoglicoproteína
9.
Pharmacol Res Perspect ; 12(2): e1194, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38573021

RESUMO

The SARS-CoV-2 caused COVID-19 pandemic has posed a global health hazard. While some vaccines have been developed, protection against viral infection is not perfect because of the urgent approval process and the emergence of mutant SARS-CoV-2 variants. Here, we employed UDCA as an FXR antagonist to regulate ACE2 expression, which is one of the key pathways activated by SARS-CoV-2 Delta variant infection. UDCA is a well-known reagent of liver health supplements and the only clinically approved bile acid. In this paper, we investigated the protective efficacy of UDCA on Omicron variation, since it has previously been verified for protection against Delta variant. When co-housing with an Omicron variant-infected hamster group resulted in spontaneous airborne transmission, the UDCA pre-supplied group was protected from weight loss relative to the non-treated group at 4 days post-infection by more than 5%-10%. Furthermore, UDCA-treated groups had a 3-fold decrease in ACE2 expression in nasal cavities, as well as reduced viral expressing genes in the respiratory tract. Here, the data show that the UDCA serves an alternative option for preventive drug, providing SARS-CoV-2 protection against not only Delta but also Omicron variant. Our results of this study will help to propose drug-repositioning of UDCA from liver health supplement to preventive drug of SARS-CoV-2 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Humanos , Ácido Ursodesoxicólico/farmacologia , Ácido Ursodesoxicólico/uso terapêutico , Enzima de Conversão de Angiotensina 2/genética , Pandemias
10.
Front Cell Infect Microbiol ; 14: 1355809, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606293

RESUMO

During the SARS-CoV-2 pandemic angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) were constantly under the scientific spotlight, but most studies evaluated ACE2 and TMPRSS2 expression levels in patients infected by SARS-CoV-2. Thus, this study aimed to evaluate the expression levels of both proteins before, during, and after-infection. For that, nasopharyngeal samples from 26 patients were used to measure ACE2/TMPRSS2 ex-pression via qPCR. Symptomatic patients presented lower ACE2 expression levels before and after the infection than those in asymptomatic patients; however, these levels increased during SARS-CoV-2 infection. In addition, symptomatic patients presented higher expression levels of TMPRSS2 pre-infection, which decreased in the following periods. In summary, ACE2 and TMPRSS2 expression levels are potential risk factors for the development of symptomatic COVID-19, and the presence of SARS-CoV-2 potentially modulates those levels.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/genética , Serina Endopeptidases/genética
11.
J Nanobiotechnology ; 22(1): 169, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609998

RESUMO

INTRODUCTION: Angiotensin-converting enzyme 2 (ACE2) and AXL tyrosine kinase receptor are known to be involved in the SARS-CoV-2 entry of the host cell. Therefore, targeting ACE2 and AXL should be an effective strategy to inhibit virus entry into cells. However, developing agents that can simultaneously target ACE2 and AXL remains a formidable task. The natural compound quercetin has been shown to inhibit AXL expression. MATERIALS AND METHODS: In this study, we employed PLGA nanoparticles to prepare nanoparticles encapsulated with quercetin, coated with ACE2-containing cell membranes, or encapsulated with quercetin and then coated with ACE-2-containing cell membranes. These nanoparticles were tested for their abilities to neutralize or inhibit viral infection. RESULTS: Our data showed that nanoparticles encapsulated with quercetin and then coated with ACE2-containing cell membrane inhibited the expression of AXL without causing cytotoxic activity. Nanoparticles incorporated with both quercetin and ACE2-containing cell membrane were found to be able to neutralize pseudo virus infection and were more effective than free quercetin and nanoparticles encapsulated with quercetin at inhibition of pseudo virus and SARS-CoV-2 infection. CONCLUSIONS: We have shown that the biomimetic nanoparticles incorporated with both ACE-2 membrane and quercetin showed the most antiviral activity and may be further explored for clinical application.


Assuntos
COVID-19 , Nanopartículas , Humanos , Enzima de Conversão de Angiotensina 2 , Quercetina/farmacologia , Quercetina/uso terapêutico , SARS-CoV-2
12.
Virulence ; 15(1): 2339703, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38576396

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has posed enormous challenges to global public health. The use of antibiotics has greatly increased during the SARS-CoV-2 epidemic owing to the presence of bacterial co-infection and secondary bacterial infections. The antibiotics daptomycin (DAP) is widely used in the treatment of infectious diseases caused by gram-positive bacteria owing to its highly efficient antibacterial activity. It is pivotal to study the antibiotics usage options for patients of coronavirus infectious disease (COVID-19) with pneumonia those need admission to receive antibiotics treatment for bacterial co-infection in managing COVID-19 disease. Herein, we have revealed the interactions of DAP with the S protein of SARS-CoV-2 and the variant Omicron (B1.1.529) using the molecular docking approach and Omicron (B1.1.529) pseudovirus (PsV) mimic invasion. Molecular docking analysis shows that DAP has a certain degree of binding ability to the S protein of SARS-CoV-2 and several derived virus variants, and co-incubation of 1-100 µM DAP with cells promotes the entry of the PsV into human angiotensin-converting enzyme 2 (hACE2)-expressing HEK-293T cells (HEK-293T-hACE2), and this effect is related to the concentration of extracellular calcium ions (Ca2+). The PsV invasion rate in the HEK-293T-hACE2 cells concurrently with DAP incubation was 1.7 times of PsV infection alone. In general, our findings demonstrate that DAP promotes the infection of PsV into cells, which provides certain reference of antibiotics selection and usage optimization for clinicians to treat bacterial coinfection or secondary infection during SARS-CoV-2 infection.


Assuntos
COVID-19 , Daptomicina , Simulação de Acoplamento Molecular , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2/efeitos dos fármacos , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Daptomicina/farmacologia , Daptomicina/uso terapêutico , COVID-19/virologia , Antibacterianos/farmacologia , Ligação Proteica , Internalização do Vírus/efeitos dos fármacos , Betacoronavirus/efeitos dos fármacos , Pandemias , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Células HEK293 , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química
13.
PLoS Pathog ; 20(4): e1012156, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38598560

RESUMO

SARS-CoV-2 has been shown to cause wide-ranging ocular abnormalities and vision impairment in COVID-19 patients. However, there is limited understanding of SARS-CoV-2 in ocular transmission, tropism, and associated pathologies. The presence of viral RNA in corneal/conjunctival tissue and tears, along with the evidence of viral entry receptors on the ocular surface, has led to speculation that the eye may serve as a potential route of SARS-CoV-2 transmission. Here, we investigated the interaction of SARS-CoV-2 with cells lining the blood-retinal barrier (BRB) and the role of the eye in its transmission and tropism. The results from our study suggest that SARS-CoV-2 ocular exposure does not cause lung infection and moribund illness in K18-hACE2 mice despite the extended presence of viral remnants in various ocular tissues. In contrast, intranasal exposure not only resulted in SARS-CoV-2 spike (S) protein presence in different ocular tissues but also induces a hyperinflammatory immune response in the retina. Additionally, the long-term exposure to viral S-protein caused microaneurysm, retinal pigmented epithelium (RPE) mottling, retinal atrophy, and vein occlusion in mouse eyes. Notably, cells lining the BRB, the outer barrier, RPE, and the inner barrier, retinal vascular endothelium, were highly permissive to SARS-CoV-2 replication. Unexpectedly, primary human corneal epithelial cells were comparatively resistant to SARS-CoV-2 infection. The cells lining the BRB showed induced expression of viral entry receptors and increased susceptibility towards SARS-CoV-2-induced cell death. Furthermore, hyperglycemic conditions enhanced the viral entry receptor expression, infectivity, and susceptibility of SARS-CoV-2-induced cell death in the BRB cells, confirming the reported heightened pathological manifestations in comorbid populations. Collectively, our study provides the first evidence of SARS-CoV-2 ocular tropism via cells lining the BRB and that the virus can infect the retina via systemic permeation and induce retinal inflammation.


Assuntos
Barreira Hematorretiniana , COVID-19 , Retina , SARS-CoV-2 , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Animais , Barreira Hematorretiniana/virologia , COVID-19/imunologia , COVID-19/virologia , Camundongos , Humanos , Retina/virologia , Retina/imunologia , Retina/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Internalização do Vírus , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Inflamação/imunologia , Inflamação/virologia , Betacoronavirus/fisiologia , Tropismo Viral , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Infecções por Coronavirus/patologia
14.
Chaos ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608314

RESUMO

The pathogen SARS-CoV-2 binds to the receptor angiotensin-converting enzyme 2 (ACE2) of the target cells and then replicates itself through the host, eventually releasing free virus particles. After infection, the CD8 T-cell response is triggered and appears to play a critical role in the defense against virus infections. Infected cells and their activated CD8 T-cells can cause tissue damage. Here, we established a mathematical model of within-host SARS-CoV-2 infection that incorporates the receptor ACE2, the CD8 T-cell response, and the damaged tissues. According to this model, we can get the basic reproduction number R0 and the immune reproduction number R1. We provide the theoretical proof for the stability of the disease-free equilibrium, immune-inactivated equilibrium, and immune-activated equilibrium. Finally, our numerical simulations show that the time delay in CD8 T-cell production can induce complex dynamics such as stability switching. These results provide insights into the mechanisms of SARS-CoV-2 infection and may help in the development of effective drugs against COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2 , Linfócitos T CD8-Positivos , Modelos Teóricos
15.
Signal Transduct Target Ther ; 9(1): 104, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654010

RESUMO

The angiotensin-converting enzyme 2 (ACE2) is a primary cell surface viral binding receptor for SARS-CoV-2, so finding new regulatory molecules to modulate ACE2 expression levels is a promising strategy against COVID-19. In the current study, we utilized islet organoids derived from human embryonic stem cells (hESCs), animal models and COVID-19 patients to discover that fibroblast growth factor 7 (FGF7) enhances ACE2 expression within the islets, facilitating SARS-CoV-2 infection and resulting in impaired insulin secretion. Using hESC-derived islet organoids, we demonstrated that FGF7 interacts with FGF receptor 2 (FGFR2) and FGFR1 to upregulate ACE2 expression predominantly in ß cells. This upregulation increases both insulin secretion and susceptibility of ß cells to SARS-CoV-2 infection. Inhibiting FGFR counteracts the FGF7-induced ACE2 upregulation, subsequently reducing viral infection and replication in the islets. Furthermore, retrospective clinical data revealed that diabetic patients with severe COVID-19 symptoms exhibited elevated serum FGF7 levels compared to those with mild symptoms. Finally, animal experiments indicated that SARS-CoV-2 infection increased pancreatic FGF7 levels, resulting in a reduction of insulin concentrations in situ. Taken together, our research offers a potential regulatory strategy for ACE2 by controlling FGF7, thereby protecting islets from SARS-CoV-2 infection and preventing the progression of diabetes in the context of COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Fator 7 de Crescimento de Fibroblastos , Ilhotas Pancreáticas , Organoides , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/genética , COVID-19/metabolismo , COVID-19/virologia , COVID-19/patologia , SARS-CoV-2/genética , Organoides/virologia , Organoides/metabolismo , Organoides/patologia , Animais , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/virologia , Ilhotas Pancreáticas/patologia , Fator 7 de Crescimento de Fibroblastos/genética , Fator 7 de Crescimento de Fibroblastos/metabolismo , Camundongos , Masculino , Células-Tronco Embrionárias Humanas/metabolismo , Secreção de Insulina/genética
16.
J Agric Food Chem ; 72(15): 8606-8617, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38581395

RESUMO

Peptide IRW is the first food-derived angiotensin-converting enzyme 2 (ACE2) upregulator. This study aimed to investigate the pharmacokinetic characteristics of IRW and identify the metabolites contributing to its antihypertensive activity in spontaneously hypertensive rats (SHRs). Rats were administered 100 mg of IRW/kg of the body weight via an intragastric or intravenous route. The bioavailability (F %) was determined to be 11.7%, and the half-lives were 7.9 ± 0.5 and 28.5 ± 6.8 min for gavage and injection, respectively. Interestingly, significant blood pressure reduction was not observed until 1.5 h post oral administration, or 2 h post injection, indicating that the peptide's metabolites are likely responsible for the blood pressure-lowering activity. Time-course metabolomics revealed a significant increase in the level of kynurenine, a tryptophan metabolite, in blood after IRW administration. Kynurenine increased the level of ACE2 in cells. Oral administration of tryptophan (W), but not dipeptide IR, lowered the blood pressure and upregulated aortic ACE2 in SHRs. Our study supports the key role of tryptophan and its metabolite, kynurenine, in IRW's blood pressure-lowering effects.


Assuntos
Enzima de Conversão de Angiotensina 2 , Hipertensão , Ratos , Animais , Ratos Endogâmicos SHR , Enzima de Conversão de Angiotensina 2/metabolismo , Disponibilidade Biológica , Cinurenina/metabolismo , Cinurenina/farmacologia , Triptofano/metabolismo , Peptídeos/metabolismo , Anti-Hipertensivos/farmacologia , Pressão Sanguínea , Hipertensão/metabolismo , Peptidil Dipeptidase A/metabolismo
17.
Comput Biol Med ; 173: 108264, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564853

RESUMO

SARS-CoV-2 is an enveloped RNA virus that causes severe respiratory illness in humans and animals. It infects cells by binding the Spike protein to the host's angiotensin-converting enzyme 2 (ACE2). The bat is considered the natural host of the virus, and zoonotic transmission is a significant risk and can happen when humans come into close contact with infected animals. Therefore, understanding the interconnection between human, animal, and environmental health is important to prevent and control future coronavirus outbreaks. This work aimed to systematically review the literature to identify characteristics that make mammals suitable virus transmitters and raise the main computational methods used to evaluate SARS-CoV-2 in mammals. Based on this review, it was possible to identify the main factors related to transmissions mentioned in the literature, such as the expression of ACE2 and proximity to humans, in addition to identifying the computational methods used for its study, such as Machine Learning, Molecular Modeling, Computational Simulation, between others. The findings of the work contribute to the prevention and control of future outbreaks, provide information on transmission factors, and highlight the importance of advanced computational methods in the study of infectious diseases that allow a deeper understanding of transmission patterns and can help in the development of more effective control and intervention strategies.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Receptores Virais/química , Ligação Proteica , Mamíferos/metabolismo
18.
Carbohydr Polym ; 332: 121884, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431405

RESUMO

The global healthcare challenge posed by COVID-19 necessitates the continuous exploration for novel antiviral agents. Fucoidans have demonstrated antiviral activity. However, the underlying structure-activity mechanism responsible for the inhibitory activity of fucoidans from Ascophyllum nodosum (FUCA) and Undaria pinnatifida (FUCU) against SARS-CoV-2 remains unclear. FUCA was characterized as a homopolymer with a backbone structure of repeating (1 â†’ 3) and (1 â†’ 4) linked α-l-fucopyranose residues, whereas FUCU was a heteropolysaccharide composed of Fuc1-3Gal1-6 repeats. Furthermore, FUCA demonstrated significantly higher anti-SARS-CoV-2 activity than FUCU (EC50: 48.66 vs 69.52 µg/mL), suggesting the degree of branching rather than sulfate content affected the antiviral activity. Additionally, FUCA exhibited a dose-dependent inhibitory effect on ACE2, surpassing the inhibitory activity of FUCU. In vitro, both FUCA and FUCU treatments downregulated the expression of pro-inflammatory cytokines (IL-6, IFN-α, IFN-γ, and TNF-α) and anti-inflammatory cytokines (IL-10 and IFN-ß) induced by viral infection. In hamsters, FUCA demonstrated greater effectiveness in attenuating lung and gastrointestinal injury and reducing ACE2 expression, compared to FUCU. Analysis of the 16S rRNA gene sequencing revealed that only FUCU partially alleviated the gut microbiota dysbiosis caused by SARS-CoV-2. Consequently, our study provides a scientific basis for considering fucoidans as poteintial prophylactic food components against SARS-CoV-2.


Assuntos
Ascophyllum , COVID-19 , 60578 , Polissacarídeos , Undaria , Humanos , Ascophyllum/química , Enzima de Conversão de Angiotensina 2 , SARS-CoV-2 , RNA Ribossômico 16S , Undaria/química , Citocinas , Inflamação , Antivirais/farmacologia , Antivirais/uso terapêutico
19.
Sci Rep ; 14(1): 5846, 2024 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-38462662

RESUMO

The expression of ACE2 is linked to disease severity in COVID-19 patients. The ACE2 receptor gene polymorphisms are considered determinants for SARS-CoV-2 infection and its outcome. In our study, serum ACE2 and its genetic variant S19P rs73635825 polymorphism were investigated in 114 SARS-CoV-2 patients. The results were compared with 120 control subjects. ELISA technique and allele discrimination assay were used for measuring serum ACE2 and genotype analysis of ACE2 rs73635825. Our results revealed that serum ACE2 was significantly lower in SARS-CoV-2 patients (p = 0.0001), particularly in cases with hypertension or diabetes mellitus. There was a significant difference in the genotype distributions of ACE2 rs73635825 A > G between COVID-19 patients and controls (p-value = 0.001). A higher frequency of the heterozygous AG genotype (65.8%) was reported in COVID-19 patients. The G allele was significantly more common in COVID-19 patients (p < 0.0001). The AG and GG genotypes were associated with COVID-19 severity as they were correlated with abnormal laboratory findings, GGO, CXR, and total severity scores with p < 0.05. Our results revealed that the ACE2 S19P gene variant is correlated with the incidence of infection and its severity, suggesting the usefulness of this work in identifying the susceptible population groups for better disease control.


Assuntos
COVID-19 , Humanos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/genética , Egito/epidemiologia , Gravidade do Paciente , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Polimorfismo Genético , SARS-CoV-2/metabolismo
20.
World J Gastroenterol ; 30(6): 607-609, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38463024

RESUMO

The present letter to the editor is related to the study titled 'Angiotensin-converting enzyme 2 improves liver fibrosis in mice by regulating autophagy of hepatic stellate cells'. Angiotensin-converting enzyme 2 can alleviate liver fibrosis by regulating autophagy of hepatic stellate cells and affecting the renin-angiotensin system.


Assuntos
Peptidil Dipeptidase A , Sistema Renina-Angiotensina , Animais , Camundongos , Angiotensina II/metabolismo , Enzima de Conversão de Angiotensina 2 , Fibrose , Células Estreladas do Fígado/metabolismo , Cirrose Hepática , Peptidil Dipeptidase A/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...